Mammalian DET1 regulates Cul4A activity and forms stable complexes with E2 ubiquitin-conjugating enzymes.
نویسندگان
چکیده
DET1 (de-etiolated 1) is an essential negative regulator of plant light responses, and it is a component of the Arabidopsis thaliana CDD complex containing DDB1 and COP10 ubiquitin E2 variant. Human DET1 has recently been isolated as one of the DDB1- and Cul4A-associated factors, along with an array of WD40-containing substrate receptors of the Cul4A-DDB1 ubiquitin ligase. However, DET1 differs from conventional substrate receptors of cullin E3 ligases in both biochemical behavior and activity. Here we report that mammalian DET1 forms stable DDD-E2 complexes, consisting of DDB1, DDA1 (DET1, DDB1 associated 1), and a member of the UBE2E group of canonical ubiquitin-conjugating enzymes. DDD-E2 complexes interact with multiple ubiquitin E3 ligases. We show that the E2 component cannot maintain the ubiquitin thioester linkage once bound to the DDD core, rendering mammalian DDD-E2 equivalent to the Arabidopsis CDD complex. While free UBE2E-3 is active and able to enhance UbcH5/Cul4A activity, the DDD core specifically inhibits Cul4A-dependent polyubiquitin chain assembly in vitro. Overexpression of DET1 inhibits UV-induced CDT1 degradation in cultured cells. These findings demonstrate that the conserved DET1 complex modulates Cul4A functions by a novel mechanism.
منابع مشابه
Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes.
COP10 is a ubiquitin-conjugating enzyme variant (UEV), which is thought to act together with COP1, DET1, and the COP9 signalosome (CSN) in Arabidopsis to repress photomorphogenesis. Here, we demonstrate that COP10 interacts with ubiquitin-conjugating enzymes (E2s) in vivo, and can enhance their activity in vitro, an activity distinct from previous characterized UEVs such as MMS2 and UEV1. Furth...
متن کاملEffect of Arabidopsis COP10 ubiquitin E2 enhancement activity across E2 families and functional conservation among its canonical homologues.
Arabidopsis thaliana COP10 (constitutive photomorphogenic 10) is a UEV [Ub (ubiquitin)-conjugating enzyme (E2) variant protein] that is required for repression of seedling photomorphogenesis in darkness. COP10 forms a complex {the CDD complex [COP10-DET1 (de-etiolated 1)-DDB1 (DNA damage binding protein 1) complex]} with DET1 and DDB1a in vivo and can enhance the activity of Ub-conjugating enzy...
متن کاملThe ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme.
The ubiquitin-like protein SMT3 from Saccharomyces cerevisiae and SUMO-1, its mammalian homolog, can be covalently attached to other proteins posttranslationally. Conjugation of ubiquitin requires the activities of ubiquitin-activating (E1) and -conjugating (E2) enzymes and proceeds via thioester-linked enzyme-ubiquitin intermediates. Herein we show that UBC9, one of the 13 different E2 enzymes...
متن کاملThe HIP2~Ubiquitin Conjugate Forms a Non-Compact Monomeric Thioester during Di-Ubiquitin Synthesis
Polyubiquitination is a post-translational event used to control the degradation of damaged or unwanted proteins by modifying the target protein with a chain of ubiquitin molecules. One potential mechanism for the assembly of polyubiquitin chains involves the dimerization of an E2 conjugating enzyme allowing conjugated ubiquitin molecules to be put into close proximity to assist reactivity. HIP...
متن کاملUbe2W conjugates ubiquitin to α-amino groups of protein N-termini
The covalent attachment of the protein ubiquitin to intracellular proteins by a process known as ubiquitylation regulates almost all major cellular systems, predominantly by regulating protein turnover. Ubiquitylation requires the co-ordinated action of three enzymes termed E1, E2 and E3, and typically results in the formation of an isopeptide bond between the C-terminal carboxy group of ubiqui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 27 13 شماره
صفحات -
تاریخ انتشار 2007